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Light-scattering study of modulated structure in a chiral smectic-A liquid crystal

Anlun Tang and S. Sprunt
Department of Physics, Kent State University, Kent, Ohio 44242

~Received 10 June 1997!

We use dynamic light scattering to investigate the fluctuation modes of a chiral smectic-A liquid crystal
which exhibits a metastable one-dimensional modulation of the smectic layers parallel to the average layer
plane. The modulation, which contains two components~a ‘‘main’’ and ‘‘fine’’ structure!, breaks translational
symmetry in the layer plane, and produces two new hydrodynamic fluctuation modes in addition to the director
fluctuations. In a sufficiently large applied electric field, the modulation is destabilized: large amplitude fluc-
tuations of the symmetry-restoring modes are observed. Both the frequency and dispersion of these modes
change significantly from the zero field case. We present a phenomenological elastic theory, which quantita-
tively describes the measured dispersion of the mode frequencies and amplitudes, in both zero and high applied
field. We also discuss how the transition from zero to high applied field might be understood in terms of recent
theories of smectic phases with broken layer inversion symmetry, which predict a nontrivial renormalization of
the elastic constants due to anharmonic fluctuations.
@S1063-651X~98!12003-2#

PACS number~s!: 61.30.Eb, 78.35.1c
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I. INTRODUCTION

Smectic liquid crystals composed of chiral molecules
of fundamental physical importance, because they exhib
remarkable range of different phases and structural ph
transitions which are uniquely associated with the prese
of spontaneous polar order. They are also finding stea
increasing application in electro-optic technologies. In tilt
chiral smectics, mirror symmetry is broken through the pla

of the tilt @1#, and a polarizationPW appears along the axi

perpendicular to this plane—i.e.,PW is perpendicular to both
the smectic layer normal and the molecular long axis~or

director! nW . Under an applied electric fieldEW , PW —and con-
sequentlynW —can be rotated about the layer normal~Gold-
stone mode!. In the smectic-A phase, however, both the ti

angleu andPW vanish, and mirror symmetry is broken only

the presence of an applied fieldEW perpendicular tonW . The
result is aninducedpolarization and a continuous variatio
of u with E, or electroclinic effect. In this case, the motion
nW corresponds to rotation about an axis perpendicular to
layer normal~soft mode!.

In materials with large electroclinic effects, an addition
broken symmetry has been recently observed@2#, namely a
uniaxial modulation of both the director and smectic lay
orientation whose wave vector lies in the layer plane, alo
the tilt direction, and perpendicular to the induced polari
tion. Between crossed polarizers in the microscope,
modulation appears as a striking pattern of stripes, which
parallel to the average layer normal and alternate in cont
along the modulation direction. The amplitude of the mod

lation is a strong function ofEW , but does not vanish whe

EW→0. This fact, together with careful optical and x-ray me
surements@3,4# which indicate that theaveragetilt is zero
for E50, implies that the modulation does not arise stric
from shrinkage of the layer spacing in a tilted smectic, p
duced by minimizing the elastic energy at constant volu
571063-651X/98/57~3!/3050~9!/$15.00
e
a
se
ce
ly

e

e

l

r
g
-
e
n
st
-

-

-
e

@5#. Alternative mechanisms, which have recently been p
posed to explain modulated structure in ferroelectric liqu
crystals, involve either a modulation of the local polarizati
stabilized by charged impurities@6# or a regular pattern of
electrohydrodynamic flow of charged impurities@7#, similar
to Williams domains in nematic liquid crystals. Neithe
mechanism, however, has been confirmed in the ch
smectic-A phase.

In an earlier work@8#, we addressed the key issue of th
effects of the layer modulation on the fluctuation modes
the system. This problem is important since the dynam
consequences of the modulated structure are likely to imp
the technical application of any high-polarization chir
smectic. Briefly, the layer modulation, which breaks contin
ous translational symmetry within the smectic layers, w
shown to generate a new symmetry-restoring hydrodyna
mode, corresponding to undulations of the domain walls—
one-dimensional unit cell boundaries—of the modulatio
The properties of this ‘‘domain’’ mode were explained by
elastic free energy based on a two-dimensional lattice w
rectangular symmetry~broken translational symmetry alon
the modulation direction as well as in the direction of sme
tic layering!. However, the mode was also found to be sp
into two components, which were attributed to distinct s
face and bulk components of the layer modulation.

In the present paper, we expand on our previous result
two significant ways. First, we show that the splitting of t
domain mode is in fact due to the presence oftwo
modulations—a ‘‘main’’ and ‘‘fine’’ structure—which ap-
parently coexist through the bulk of the sample. An extend
theory, which includes both modulations, is successfully
plied to a much more comprehensive set of dynamical d
and definitively establishes that the domain modes in z
field are associated with first order elastic restoring for
~i.e., broken translational symmetry!. Second, we presen
new data taken in an applied dc electric field. The field d
stabilizes the modulated structure, producing very large fl
tuations in the domain wall displacements. The correspo
3050 © 1998 The American Physical Society
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FIG. 1. Left: Optical micrograph showing the stripe texture characteristic of the layer-director modulation in the chiral smectic-A liquid
crystal KN125 in zero field. The average director and smectic layer normal are parallel to the stripes. The main pattern has a p
comparable to the cell thickness~10 mm!. A close examination reveals a fine structure within the main stripes. Middle: The fine stru
modulation is clearly exposed in a weak applied field (E50.4 V/mm). It has about one-fifth the period of and is roughly parallel to the m
modulation. Right: In a large applied field (E512.5 V/mm), the stripe structure is destabilized, and very large fluctuations of the do
walls of the modulation are observed. The stripes assume the appearance of rough interfaces.
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ing dynamics differ significantly from the zero field case, b
can still be described by our phenomenological model, w
the domain mode dispersion now dominated by second o
elastic constants and containing no contribution from fi
order elasticity. This result is discussed in light of rece
theoretical predictions of strongly renormalized elastic c
stants due to anharmonic terms in the free energy of a ch
smectic liquid crystal.

II. EXPERIMENTAL DETAILS

The chemical structure of the liquid crystal studied~de-
noted KN125! is shown in Fig. 2. This material has a broa

FIG. 2. The chemical structure of KN125~above!, and a sche-
matic of our light scattering experiment. The polarizer and analy
were arranged to probe either ordinary-extraordinary~OE! or EO
scattering processes. The scattering vectorqW is perpendicular to the
modulation directionx̂, and varies as a function of scattering ang
us for normal incidence.
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chiral smectic-A phase,;30 °C to 78.3 °C measured o
heating. It can, however, be supercooled to ambient temp
tures, where it is stable for several days to weeks. At 25
the electroclinic coefficient is quite large, (du/dE)E50
54.5°mm/V, and the induced polarization is 70 nC/cm2 at
E515 V/mm @9#. The sample was loaded in the isotrop
phase into a 10mm thick commercial cell, whose inside su
faces were coated with a transparent conducting layer~ITO!
and a layer of polyimide, which is uniformly rubbed for ho
mogeneous alignment of the liquid crystal. At the isotrop
to smectic-A transition, the sample was exposed to a weak
field ~a 10 V square wave at 10 Hz! to assist in achieving
uniform alignment. The uniaxial layer-director modulation

r

FIG. 3. A typical measurement of the zero-field time correlati
function of the scattered intensity in the OE geometry. The so
~dashed! line represents a fit to three~two! overdamped modes.
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3052 57ANLUN TANG AND S. SPRUNT
clearly observed in the polarizing microscope during co
ing, and remains after the electric field is switched off. F
ure 1~top! is a microscopic picture of our sample of betwe
crossed polarizers at 25 °C andE50. The average directo
nW 0 is parallel to the stripe pattern within the61° accuracy of
our microscope measurement; thus, the stripes correspo
a spatial modulation of the director perpendicular tonW 0 . The
period d0 is ;10mm ~about equal to the cell thickness!.
Detailed x-ray measurements@3,10# have confirmed the op
tical modulation is accompanied by a modulation of t
smectic layer orientation. A close examination of Fig. 1~top!
reveals a fine structure patternin addition to the main stripes
and roughly parallel to the main stripe direction. As shown
Fig. 1 ~middle!, this fine structure emerges clearly in a we
applied field (E50.4 V/mm). The fine structure spacing i
approximately 2mm, and appears to be commensurate w
the main stripe pattern.

A schematic of our light scattering experiment is sho
in Fig. 2. Light from an argon-ion laser~l5488 nm, inci-
dent power510 mW, focused waist5100mm! was normally
incident on the sample. The position of the beam on
sample was adjusted to illuminate a region which gave sh
diffraction spots corresponding to the wave vector of
main layer-director modulation. Excellent alignment ofnW 0
was indicated by a sharp minimum in the depolarized tra
mitted light, observed asnW 0 was rotated into and out of th
scattering plane. The scattering angleus was varied between
10° and 70°, and the sample was oriented so that the sca
ing vectorqW was maintained in a plane perpendicular to t

FIG. 4. Measured zero-field time correlation functions as a fu
tion of scattering angleus for normal incidence. Upper~lower!
curves are data for OE~EO! scattering processes. The solid lines a
fits to three overdamped modes.
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modulation~x̂ direction!, giving qx50. Thus, only fluctua-
tions along the average smectic layer normalẑ, q5qz , and
in the smectic planes but perpendicular to the modulat
direction, q5qy , are detected. We measured the intens
intensity time correlation function̂I (2qW ,0)I (qW ,t)& of the
depolarized scattered light as a function ofus for two com-
binations of polarizer and analyzer, referred to as OE~ordi-
nary to extraordinary scattering process! and EO~extraordi-
nary to ordinary!. Correlation data were obtained in ze
field and with a dc field ofE515 V/mm applied parallel to
the smectic layers~y direction!. We verified that no damage
to the sample occurred by cycling the field, waiting one ho
between cycles, and comparing both zero and high field c
relation functions for different cycles. No essential diffe
ences were observed, although significant hysteresis~prob-
ably due to charge injection and removal! occurred.

III. RESULTS AND DISCUSSION: ZERO FIELD

Figure 3 shows a typical~normalized! correlation function
obtained from our sample in zero field. One clearly obser
two overdamped modes—a fast mode, frequencyv1
;104– 105 Hz, and a slow mode,v3;10 Hz. We also see a
weak additional mode~indicated by the arrow!, with inter-
mediate frequencyv2 . To demonstrate the presence of t
intermediate mode, we compared fits of the data to two
three damped exponentials; the expression for the homod
intensity correlation function is

^I ~2qW ,0!I ~qW ,t !&5F(
i 51

3

Aiexp„2v i~qW !t…G2

1B, ~3.1!

whereAi are the mode amplitudes, andB is the measured
background. Clearly a reasonable fit to the data requires t
modes. In Fig. 4 we show correlation data at several sca
ing angles~10°–68°! and at zero incident angle. In each cas
the lower and upper plots correspond to OE and EO polar
settings, respectively. We see that the OE data vary sig
cantly with scattering angle, while the EO data are less
sensitive tous . The continuous solid lines are our thre
mode fits. From these fits we obtain the dispersion relati
of the modes for both the OE and EO cases. The results
plotted in Fig. 5. We find one dispersionless~nonhydrody-
namic! mode (v1) and two dispersive~hydrodynamic!
modes~v2 and v3!. It is natural to expect that the slow
hydrodynamic modes are associate with fluctuation of
main walls of the modulated structure, whereas the fast m
is associated with the so-called soft mode of the smectiA
phase, which corresponds to fluctuations of the liquid crys
director away from the layer normal.

We now discuss a phenomenological theory to expl
these dynamics. Based on the results of previous x-ray s
ies @3,10#, we assume that both the main and fine struct
optical modulations of Fig. 1 mirror underlying modulation
of the smectic layers. For simplicity, we assume that
modulations are sinusoidal in zero field. Figure 6 show
schematic of the proposed structure. The equilibrium d
placements of the smectic layers for the main and fine st
ture components are given by

uz0
~ i !~x!5u0

~ i !sin~q0
~ i !x1f0

~ i !!, ~3.2!

-
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57 3053LIGHT-SCATTERING STUDY OF MODULATED . . .
whereq0
( i ) and f0

( i ) are the wave vectors and phases of
two modulations. The fluctuating part of the layer displac
ment is denoteduz . The angles describing the smectic lay
orientation are

a~ i !~x!5
]uz0

~ i !

]x
5a0

~ i !cos~q0
~ i !x1f0

~ i !!. ~3.3!

As determined by x-ray and optical measurements, thea0
(1)

for the main component is a few degrees in zero field a

FIG. 5. Zero-field dispersion of the frequencies of the th
overdamped modes corresponding to director (v1) and domain wall
~v2 andv3! fluctuations~see text!. Filled ~open! circles correspond
to the OE~EO! geometry, and solid lines are fits to Eqs.~3.12!–
~3.14! of the text.

FIG. 6. Schematic of a model for the layer-modulated ch
smectic-A structure. The horizontal sine waves represent the
components of the layer modulation. Vertical lines indicate dom
walls for the two components~here they are shown in phase!. The
displacement variables for the domain walls, as well as for
smectic layers, are indicated.
e
-
r

d

a0
(2),a0

(1) . The domain walls of the layer modulations a
indicated by vertical lines; if we model these as ‘‘supe
smectic’’ density waves, the associated ‘‘layer’’ displac
ments, denotedux

( i ) , are continuous functions ofx. The
modulation breaks translational symmetry along thex direc-
tion, in addition to the usual broken symmetry of a smect
A along thez axis. The symmetry in thex-z plane is rectan-
gular~with a large anisotropy in the periodicities alongx and
z, dx /dz;103!, and is continuous along they axis. We write
the corresponding elastic free energy density as

F5
1

2 F(
i 51

2

C1
~ i !~]xux

~ i !!21C2~]zuz!
2G1

1

2 (
i 51

2

@C12
~ i !~]xuz

1]zux
~ i !!21C128

~ i !~]xux
~ i !!~]zuz!#1

1

2 F(
i 51

2

K1
~ i !~]y

2ux
~ i !!2

1K2~]y
2uz!

2G1
D

2
~nW 2 lWs!21

D8

2
~ lW ~1!2 lW ~2!!2. ~3.4!

There are three types of terms in this expression:~i!
terms describing deformations of the smectic layers and
domain walls of the modulated structure, which include fi
order elastic constantsC for the broken symmetry direction
x andz; ~ii ! terms containing second order elastic moduliK
for fluctuations in the continuous symmetry directiony; and

FIG. 7. Calculated curves showing the dependence on scatte
angle of the two combinations of scattering vector components
pearing in the dispersion relations for the fluctuation modes@Eqs.
~3.12!–~3.14! of the text#. A low qy cutoff, representing the finite
cell thickness, has been imposed~see text!.
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3054 57ANLUN TANG AND S. SPRUNT
~iii ! coupling terms which favor parallel orientation of th

director and smectic layer normal,lWS, and of the domain
wall normals for the two components of the layer-direc

modulation,lW (1) and lW (2). The normals are given by

lWs5
¹W f s

u¹W f su
, ~3.5!

where

f s5z2ndz2uz0
~1!~x!2uz0

~2!~x!2uz~rW !2a~1!~x!ux
~1!~rW !

2a~2!~x!ux
~2!~rW ! ~3.6!

and

lW ~ i !5
¹W f i

u¹W f i u
, ~3.7!
ts
r

where

f i5x2ndx
~ i !2ux

~ i !~rW !. ~3.8!

Equations~3.6! and ~3.8! are correct to first order in the
anglesa ( i ). The coupling between the directornW and the
domain wall fluctuationsux

( i ) , which is generated through
Eqs.~3.4!, ~3.5!, and the fourth term in the free energy de
sity Eq. ~3.3!, is proportional to thea ( i ). Since these are
small quantities, the coupling terms may be treated as
turbations. The zero-order normal mode frequencies m
then be calculated by diagonalizing the matrix form ofF
with thea ( i ) set to zero. This calculation is further simplifie
if we assume the energy associated with compressing
smectic layers is effectively infinite~or uz50!. Finally, tak-
ing qz50 for our experimental geometry andqz

2@(q0
( i ))2

~typically qz;6 mm21, q0
(1);0.3mm21, and q0

(2)

;1.5mm21!, we find
F0~qW !5
1

2

nx

ny

qyux
~1!

qyux
~2!

nx ny qyux
~1! qyux

~2!

S D 0 0 0

0 D 0 0

0 0 A~1!~qW !1D8 2D8

0 0 2D8 A~2!~qW !1D8

D , ~3.9!
ted
l,
of-
of

his

-
are

d to

ree
where

A~1!~qW !5C12
~1!qz

2/qy
21K1

~1!qy
2, ~3.10!

A~2!~qW !5C12
~2!qz

2/qy
21K1

~2!qy
2. ~3.11!

The zero-order normal mode frequencies are

v15
D

h1
, ~3.12!

v25
1

h2
~C12

1 qz
2/qy

21K1
1qy

21D8!, ~3.13!

v35
1

h3
~C12

1 qz
2/qy

21K1
1qy

2!, ~3.14!

where theh i are phenomenological damping coefficien
and

C12
1 [ 1

2 ~C12
~1!1C12

~2!!, ~3.15!

K1
1[ 1

2 ~K1
~1!1K1

~2!!. ~3.16!

We also assume~and verify below! that

D82@ 1
4 ~C12

~1!2C12
~2!!25~C12

2 !2. ~3.17!
,

The first mode is the nonhydrodynamic mode associa
with fluctuations ofnW away from the smectic layer norma
while the other two modes arise from in-phase and out-
phase motion of the domain walls for the two components
the smectic layer modulation. The latter areq dependent, as
anticipated from the data in Fig. 5. The key features of t
dependence are illustrated in Fig. 7, which plotsqz

2/qy
2 and

qy
2 for

qz5k0sin us ~OE and EO!, ~3.18!

qy5k0Fh iS 12
sin2us

n'
2 D 1/2

2n'G ~OE!, ~3.19!

qy5k0Fni2n'S 12
sin2us

n'
2 D 1/2G ~EO!, ~3.20!

wherek052p/l. To account for the finite cell thicknesst,
we also imposed a lowqy cutoff, qmin;2p/t, by replacingqy

2

in Eqs.~4.10! and~4.11! with qy
21qmin

2 . In the OE scattering
geometry, we see that theqz

2/qy
2 andqy

2 dependencies asso
ciated with the first and second order elastic constants
very different functions ofus . Moreover,qz

2/qy
2 changes be-

tween the OE and EO scattering geometries from a peake
a smoothly increasing function ofus .

We now analyze the data for the dispersion of the th
modes in Fig. 5 using Eqs.~3.12!–~3.14! and Eqs.~3.18!–
~3.20!. The refractive indexn' and anisotropyDn were fixed
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to typical values 1.51 and 0.16, respectively, during fittin
Of the six remaining parameters,D/h1 , C12

1 /h2 , C12
1 /h3 ,

D8/h2 , K1
1/h2 , andK1

1/h3 . The latter two were found to
be unnecessary to describe the data. Indeed, Fig. 7 sh
that the curvature of the OE data in Fig. 5 is consistent w
a qz

2/qy
2 dependence and differs qualitatively from theqy

2

behavior associated with the second order elasticities. M
over, the shape of the data changes in the expected
between OE and EO scattering geometries. Thus, four
rameters involving first order elastic constants only, plus
cutoff qmin were adjusted in the fits. Very good fits of all th
data are obtained forD/h1527 000 s21, C12

1 /h25220 s21,
C12

1 /h352.6 s21, and D8/h25800 s21. We also note that
D82;16C12

12@C12
22, which is consistent with the assumptio

in Eq. ~3.17!. The cutoff qmin51.883106 cm21 is about
three times larger than 2p/t. In fact, we expect an overest
mate since we have assumed a simple step-function cu
exactly at 2p/t; the actual cutoff would be a smoothly vary
ing function, presumably beginning at a shorter wavelen
~higherqy!.

We have also analyzed the dependence of the norma
mode amplitudesAi /( iAi , i 51 – 3 onus for both OE and
EO scattering geometries. The data are shown in Fig. 8;
malized amplitudes are plotted since we did not measure
absolute scattered intensity. To calculate the amplitudes
first express the dielectric tensor fluctuations in terms of fl
tuating components of the director for smalla ( i ), e(qW )
5eacosusnx(qW) ~OE scattering! and e(qW )5eanx(qW ) ~EO
scattering!. ~Fluctuations inny contribute to OE scattering
only, but are weaker thannx by a factor of ordera ( i ).! Next
we must calculate the coupling of the domain modes to

FIG. 8. Zero-field dispersion of the normalized amplitudes
the fluctuation modes for OE~closed symbols! and EO~open sym-
bols! scattering. The solid~dashed! lines are fits to Eqs.~3.24!–
~3.27! of the text for the EO~OE! data.
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director, since only the latter scatters light. This requires
agonalizing the free energy, Eq.~3.3!, to first order in the
coupling parametersa ( i ) using a perturbative approach. W
obtain

nx~qW !5c1~qW !

2
&D

~qy
21qmin

2 !1/2 F q2

@v1~qW !h12v2~qW !h2#
c2~qW !

2
q1

@v1~qW !h12v3~qW !h3#
c3~qW !G , ~3.21!

wherec i are the zero ordernormalmodes of the free energy
whose amplitudes can be calculated using the equiparti
theorem

^c i~2qW !c j~qW !&5
kBT

v ih i
d i j ~3.22!

and where

q6
2 5~a0

~1!q0
~1!!21~a0

~2!q0
~2!!262a0

~1!q0
~1!a0

~2!q0
~2!

3cos~f0
~1!2f0

~2!!. ~3.23!

Combining these results, we obtain the scattering am
tudes for the three normal modes~for qx50!,

A1~qW !5
kBT

h1v1~qW !
, ~3.24!

A2~qW !5
kBT

h2v2~qW !

8q2
2

qy
21qmin

2

1

@12h3v3~qW !/h1v1~qW !#2 ,

~3.25!

A3~qW !5
kBT

h3v3~qW !

8q1
2

qy
21qmin

2

1

@12h2v2~qW !/h1v1~qW !#2 ,

~3.26!

for EO scattering, and

Ai~qW !→cos2usAi~qW ! ~3.27!

for OE scattering. Figure 8 shows fits of the data for t
normalized amplitudesAi /( iAi , i 51 – 3, using Eqs.~3.24!–
~3.27! and the fit parameters obtained from the previo
analysis of the dispersion of the frequenciesv i . Only four
new parameters—the viscosity ratiosh2 /h1 andh3 /h1 plus
the dimensionless quantitiesq6 /k0—are varied for all six
data sets.~The cutoff qmin , n' , andDn were also fixed to
the values used in the fits to the frequencies!. Clearly, the
theoretical expressions give the correct qualitative beha
of the data. For the fit parameters, we findh2 /h153.3 and
h3 /h154.1, andq1 /k050.017, q2 /k050.002. Referring
back to Eq.~3.23!, this impliesf0

(1)2f0
(2) lies between 90°

and 180°; the simplest choice would be 180°~the two com-
ponents of the modulation are out of phase with each oth!.
Then takingq0

(1)52p/1050.63mm21, we get a0
(1)510°,

which is several times the zero-field limit extracted fro
x-ray scattering@3#. This discrepancy might indicate that th
two components of the modulation are not pure sine wa
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3056 57ANLUN TANG AND S. SPRUNT
@as assumed in Eq.~3.2!#. In this case, the quantitiesa0q0
would be replaced by a series containing many harmonic
q0 . The sum of the coefficientsa0 in this series could be les
than the single value calculated above. Moreover, the par
etersa6 are rather sensitive to the cutoffqmin in Eqs.~3.25!
and ~3.26!, and we have already noted that the simple fo
used for the cutoff may not be entirely accurate.

To summarize, our analysis of the normal mode frequ
cies and amplitudes, performed for two scattering proces
with distinct qW dependences and using only eight freely a
justed parameters for twelve datasets, demonstrates that th
free energy density, Eq.~3.3!, captures the essential featur
of the fluctuation spectrum of the layer-modulated chi
smectic-A liquid crystal. For the amplitudes, the theoretic
description is less satisfactory, but is perhaps as good
could be expected from a first order calculation using a p
turbative approach. Our results confirm the choice of
displacementsux

( i ) as the appropriate phenomenological va
ables for the layer-director modulation. In zero field, t
symmetry restoring modes corresponding to fluctuations
these variables can be adequately described by the first o
elastic constants alone.

IV. RESULTS AND DISCUSSION: HIGH FIELD

Very different dynamics are observed in a high appl
field. We applied a dc field of 15 V/mm; the dc field was
used to avoid strong oscillating terms on the correlat
function, which would obscure the overdamped dynam
When the field is increased above a threshold valueEc (Ec
;1.0 V/mm), low-frequency macroscopic fluctuations of th
domain walls associated with the fine structure can be
served; the fluctuation amplitudes become larger as the v
age is further increased until the fine structure is almost c
pletely destabilized and significant amplitude fluctuations
the main structure are observed. This effect is shown in
1 ~bottom!, which is a microscope picture of our samp
under a field of 12.5 V/mm. These large fluctuations drama
cally alter the light scattering correlation function; Figs.
and 10 display data forE515 V/mm for the same scatterin
geometries used in zero field. The data differ significan
from the zero field case~Figs. 4 and 5!. The nonhydrody-
namic director mode is still present but is much weaker a
faster. On the other hand, the hydrodynamic domain mo
become slower and much stronger. Moreover, as Fig
shows, we can no longer fit the correlation data with p
exponential decays as used in the zero-field case.

These results pose the question of whether we can ana
the high-field dynamics in terms of the phenomenologic
theory presented above. In particular, the large fluctuati
in the domain wall displacements suggest that anharm
terms in theux

( i ) variables should be incorporated in th
analysis of the free energy. These terms would have
important effects for light scattering. First, the fluctuati
amplitudes^uux

( i )(qW )u2& would depend on renormalized ha
monic elastic constants; for a certain class of smectic st
ture, this has been shown to be a very significant effect~see
below! @11#. Second, anharmonic terms would lead to no
linear dynamical equations, resulting in a coupling betwe
fluctuations at differentqW . Thus, the light scattered into th
detector for a fixed settingqW of our spectrometer will contain
of
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a spectrum of domain modes with wave vectors centered
qW . To account for this in our analysis of the correlatio
function, we assume that the resolution function for scat
ing from these modes is broadened from essentially ad func-
tion R(qW 8)5d(qW 2qW 8) to a function of the formR(qW 8)

FIG. 9. A typical measurement of the high-field (E
512.5 V/mm) time correlation function of the scattered intensity
the OE geometry. The solid~dashed! line represents a fit to three
modes using stretched~pure! exponentials for the domain modes.

FIG. 10. Measured high-field time correlation functions as
function of scattering angleus for normal incidence. Upper~lower!
curves are data for OE~EO! scattering processes. The solid lines a
fits to three overdamped modes using Eq.~4.2! of the text.
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;exp(2wiuqi2qi8u
n), wheren is non-negative and we assum

the broadening can be anisotropic inqW , since the allowed
anharmonic terms are@11#. If R is normalized to unity, for
n→`, we recoverR(qW 8);d(qW 2qW 8).

Including the director mode, which to first order is deco
pled from the domain wall displacements, the measured
relation function is

^I ~2qW ,0!I ~qW ,t !&5F(
i 51

2 E dqW 8R~qW 8!Ai~qW 8!exp@2v i~qW 8!t#

1A3~qW !exp„2v3~qW !t…G2

1B. ~4.1!

If we now approximate the frequencies by their lowest or
values ~linear dynamics!, the q-dependent part of the fre
quencies isv i(qW )5G iq

2. ~This form applies ifsecondorder
elasticity dominates the free energy, which is consistent w
our results from analysis of the high field data discus
below.! Then the first terms in Eq.~4.1! are proportional to
*dqW 8exp(2wjuqj2qj8u

n)Ai(qW8)exp@2iGiq82t#, which at long
times corresponds to a stretched exponential time de
dence@12#,

^I ~2qW ,0!I ~qW ,t !&.F(
i 51

2

Ai8~qW !exp@2„v i~qW !t…x#

1A3~qW !exp„2v3~qW !t…G2

1B,

~4.2!

where the exponentx.n/(n22) @12#, and theAi8 may differ
from Ai depending on the details ofR(qW ). Clearly this result
is sensible only forn.2, or x.1. This function has been
used extensively to model overdamped dynamics wher
distribution of fluctuations characterized by different valu
of some property~here the wave vectorqW ! contributes. It has
the additional virtue of adding only one more parameter~the
exponentx! to fits of the correlator data. As shown in Figs.
and 10, the function does indeed describe the data well~with
x.1.5 in all the fits!, in contrast to a pure exponential (x
51).

The mode frequencies obtained from these fits are
sented in Fig. 11. We notice that the director mode is
order of magnitude faster atE515 V/mm than in zero field;
the nonhydrodynamic gapD/h1 now has a value of
240 000 s21 ~versus 27 000 s21!. In addition, the dispersion
of the domain modes changes from a convex to a conc
shape—or from a functional form given byqz

2/qy
2 ~associated

with the first order elastic constantC12
1 , see Fig. 7! to the

form qy
2 ~associated with the second order elasticityK1

1!.
The fits to the data using Eqs.~3.12!–~3.14! confirm this
crossover. We obtainK1

1/h251.131028 s21 cm2 and
K1

1/h352.2310210 s21 cm2 with C12
1 50. The gap param-

eterD8/h3 has the same value as in zero field, and the
rametersn' , Dn, andqmin were fixed to the zero-field val
ues.

We now consider a possible explanation for these res
based on anharmonic fluctuations of the domain wall d
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h
d
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n
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-

ts
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placements. According to a recent theoretical analysis@11#,
anharmonic terms arising specifically in smectics, which la
inversion symmetry through the layer plane, can produc
nontrivial renormalization of the elastic constants. Spec
cally, the displacement fluctuations diverge aspower lawsof
the system sizeL, and the elastic constantsC andK undergo
a softening proportional to inverse powers ofL. The first
order elasticities, however, soften more rapidly,C;K3

;1/L3/4. Thus, under an external stress~e.g., applied field!, it
is possible to observe very large displacement fluctuati
described purely by second order elasticity without destr
tion of the smectic layers. If we consider the domain walls
the modulated structure to represent layers of a ‘‘sup
smectic’’ structure, this scenario is similar to what is o
served in Fig. 1~bottom! and in the crossover of the dynam
ics. It remains, however, to verify that the domain walls la
inversion symmetry. This we cannot do without a detail
explanation for the origin of the modulated structure.
present we can only speculate that if charged impurities p
an important role, a domain wall could represent the int
face between a region dominated by the influence of posi
ions and one dominated by negative ions—in this case,
domain walls~or smectic ‘‘layers’’! would lack inversion
symmetry. On the other hand, if the modulation is purely
consequence of minimizing elastic energy, the domain w
have no special microscopic meaning, and there is no b
for breaking inversion symmetry.

The sharp change in the frequency and relative amplit
of the high frequency director mode can be understood

considering the additional terms2PW •EW 1De(EW •nW )2/25

2P(nW 3 lWS)•EW 1De(EW •nW )2/2, which are present in the fre

FIG. 11. High-field dispersion of the frequencies of the thr
overdamped modes corresponding to director (v1) and domain wall
~v2 andv3! fluctuations. Filled~open! circles correspond to the OE
~EO! geometry, and the solid lines are fits to Eqs.~3.12!–~3.14! of
the text.
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energy density for nonzeroEW . ~Here, PW is the polarization
due specifically to field-induced chiral symmetry breakin!
To second order in the director fluctuationsnx andny , this
givesPE sinunx

2/21DeE2ny
2/2. As remarked in Sec. III, we

may neglect the second term, since the scattering from fl
tuations inny is expected to be much weaker thannx . Then
the frequency v1 gets an additional contribution
PE sinu/2n1 , which will dominate at high field. We can
estimate this contribution using the measuredP
570 nC/cm2 and u515° at E515 V/mm and takingh1
54 cP~a typical value!. We then obtainv15200 000 s21, in
good agreement with the measured value in Fig. 11.

V. CONCLUSION

In this paper, we have shown that chiral smectic-A liquid
crystals, in which the orientation of normally flat layers
modulated in one dimension, exhibit new, symmet
restoring fluctuation modes. These modes correspond to
tion of the unit cell boundaries~or ‘‘domain walls’’! of the
modulation; both their frequency and amplitude dispers
can be reasonably explained at the phenomenological l
by an elastic free energy density, which includes two o
served components of the modulation. In the absence of
plied fields, the domain modes are controlled by first or
elasticity, characteristic of a solid~broken translational sym
metry!. However, a sufficiently high electric field destab
s.

. R

a,

-

.

i.
c-

-
o-

n
el
-
p-
r

lizes the modulated structure, and results in a substan
softening of the first order elasticity. The domain modes
now dominated by second order elasticity, characteristic o
fluid. A significant softening of first order elasticity has
fact been predicted in systems with smectic structure un
external stress, if the smectic layers lack inversion symme
If this idea is applicable to the domain walls of the laye
director modulation~visualized as ‘‘super-smectic’’ layers!,
it suggests that the latter should have some microsco
structure which breaks inversion symmetry. A like
mechanism—and one which could significantly alter the d
namics in an applied electric field—is a nonuniform dist
bution of charged impurities@6,7#, which are known to give
rise to ‘‘ion’’ modes in ferroelectric liquid crystals@13#.
Light scattering experiments in an ac field, to look for cha
acteristic cutoff frequencies in the response of the dom
modes and thereby probe possible electrohydrodynamic
fects in the modulated chiral smectic-A phase, are currently
underway.
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