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Light-scattering study of modulated structure in a chiral smecticA liquid crystal

Anlun Tang and S. Sprunt
Department of Physics, Kent State University, Kent, Ohio 44242
(Received 10 June 1997

We use dynamic light scattering to investigate the fluctuation modes of a chiral srhelgjaid crystal
which exhibits a metastable one-dimensional modulation of the smectic layers parallel to the average layer
plane. The modulation, which contains two componéats$main” and “fine” structure), breaks translational
symmetry in the layer plane, and produces two new hydrodynamic fluctuation modes in addition to the director
fluctuations. In a sufficiently large applied electric field, the modulation is destabilized: large amplitude fluc-
tuations of the symmetry-restoring modes are observed. Both the frequency and dispersion of these modes
change significantly from the zero field case. We present a phenomenological elastic theory, which quantita-
tively describes the measured dispersion of the mode frequencies and amplitudes, in both zero and high applied
field. We also discuss how the transition from zero to high applied field might be understood in terms of recent
theories of smectic phases with broken layer inversion symmetry, which predict a nontrivial renormalization of
the elastic constants due to anharmonic fluctuations.
[S1063-651%98)12003-2

PACS numbeps): 61.30.Eb, 78.35:c

[. INTRODUCTION [5]. Alternative mechanisms, which have recently been pro-
posed to explain modulated structure in ferroelectric liquid
Smectic liquid crystals composed of chiral molecules arecrystals, involve either a modulation of the local polarization
of fundamental physical importance, because they exhibit atabilized by charged impuritig$] or a regular pattern of
remarkable range of different phases and structural phasgectrohydrodynamic flow of charged impuritigg], similar
transitions which are uniquely associated with the presenc® Williams domains in nematic liquid crystals. Neither
of spontaneous polar order. They are also finding steadilynechanism, however, has been confirmed in the chiral
increasing application in electro-optic technologies. In tiltedsmecticA phase.
chiral smectics, mirror symmetry is broken through the plane In an earlier worl{8], we addressed the key issue of the
of the tilt [1], and a polarizatiorP appears along the axis ©ffects of the layer modulation on the fluctuation modes of
. . L2 . the system. This problem is important since the dynamical
perpendlcglar to this plane—i.ek is perpendicular to b(.)th consequences of the modulated structure are likely to impact
the smectic layer normal and the molegulzir long axis the technical application of any high-polarization chiral
directop n. Under an applied electric field,, P—and con-  smectic. Briefly, the layer modulation, which breaks continu-
sequentlyi—can be rotated about the layer nornt@old-  ous translational symmetry within the smectic layers, was
stone modg In the smecticA phase, however, both the tilt shown to generate a new symmetry-restoring hydrodynamic
angled andP vanish, and mirror symmetry is broken only in mode,_ corre_sponding to undulations_ of the domain waIIs_—or
the presence of an applied fielfl perpendicular tai. The one-d|mens_|onal ur_ut“cell b_()lindarles—of the modulauon.
result is aninducedpolarization and a continuous variation The properties of this "domain” mode were (_axplameq by an
of dwith E, or electroclinic effect. In this case, the motion of elastic free energy based on a two-dimensional lattice with

A corresponds to rotation about an axis perpendicular to thh]ezt?nnc? dﬂ?;;ﬁ%?:ggg Loggnwtéﬁrfsla}::otﬂzl ;{;T:T?c?:%faslﬁlgc_
layer normal(soft mode.

In materials with large electroclinic effects, an additional tic layering. However, the mode was also found to be split

broken symmetry has been recently obserf@jd namely a :cr;tcoet;vr;) dCsﬁkpgg;ntz’n;Vrng:r;fv‘t’ﬁ;el:tg'rb#]tggu}gti%'s“nCt sur-
uniaxial modulation of both the director and smectic layer In the present ap er we expand gn our revious: results in
orientation whose wave vector lies in the layer plane, alonq X fp t pap F" t P how th tthp litti f th
the tilt direction, and perpendicular to the induced polariza—WO signiicant ways. FIrst, we show that the splitting ot the
tion. Between crossed polarizers in the microscope, thgomam . mode 'f in Iact dﬁ"? tg the presence toio
modulation appears as a striking pattern of stripes, which ruFw“OOIUI‘T"OHS_.a main” and "fine” structure—which ap-
parallel to the average layer normal and alternate in contra arently coexist through the bulk of the sample. An extended

along the modulation direction. The amplitude of the modu- eory, which includes both modulations, Is successfully ap-
' plied to a much more comprehensive set of dynamical data,

lation is a strong function oE, but does not vanish when ang definitively establishes that the domain modes in zero
E—0. This fact, together with careful optical and x-ray mea-field are associated with first order elastic restoring forces
surementg3,4] which indicate that thewveragetilt is zero  (i.e., broken translational symme}lrySecond, we present

for E=0, implies that the modulation does not arise strictlynew data taken in an applied dc electric field. The field de-
from shrinkage of the layer spacing in a tilted smectic, pro-stabilizes the modulated structure, producing very large fluc-
duced by minimizing the elastic energy at constant volumeuations in the domain wall displacements. The correspond-
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FIG. 1. Left: Optical micrograph showing the stripe texture characteristic of the layer-director modulation in the chiral snfigciiid-
crystal KN125 in zero field. The average director and smectic layer normal are parallel to the stripes. The main pattern has a periodicity
comparable to the cell thickne$s0 um). A close examination reveals a fine structure within the main stripes. Middle: The fine structure
modulation is clearly exposed in a weak applied fiedtd=0.4 V/um). It has about one-fifth the period of and is roughly parallel to the main
modulation. Right: In a large applied fieldE & 12.5 V/jum), the stripe structure is destabilized, and very large fluctuations of the domain
walls of the modulation are observed. The stripes assume the appearance of rough interfaces.

ing dynamics differ significantly from the zero field case, butchiral smecticA phase,~30°C to 78.3 °C measured on

can still be described by our phenomenological model, withyeating. It can, however, be supercooled to ambient tempera-
the domain mode dispersion now dominated by second ordeyyres; where it is stable for several days to weeks. At 25 °C,
elastic constants and containing no contribution from firstne electroclinic coefficient is quite large,d@/dE)c_,
order elasticity. This result is discussed in light of recent=4_501um/v’ and the induced polarization is 70 nCfoat
theoretical predictions of strongly renormalized elastic cong— 15 V/um [9]. The sample was loaded in the isotropic
stants_du_e t(_J anharmonic terms in the free energy of a Chi”ﬂhase into a 1@m thick commercial cell, whose inside sur-
smectic liquid crystal. faces were coated with a transparent conducting |&§e)
and a layer of polyimide, which is uniformly rubbed for ho-
Il. EXPERIMENTAL DETAILS mogeneous alignment of the liquid crystal. At the isotropic
The chemical structure of the liquid crystal studite- to smecticA transition, the sample was exposed to a weak ac

noted KN125 is shown in Fig. 2. This material has a broad field (& 10 V square wave at 10 hizo assist in achieving
uniform alignment. The uniaxial layer-director modulation is
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FIG. 2. The chemical structure of KN12&bove, and a sche- 107 107% 10* 100 102 107" 100
matic of our light scattering experiment. The polarizer and analyzer DECAY TIME (sec)
were arranged to probe either ordinary-extraordingg) or EO
scattering processes. The scattering vegtar perpendicular to the FIG. 3. A typical measurement of the zero-field time correlation

modulation directiorx, and varies as a function of scattering angle function of the scattered intensity in the OE geometry. The solid
6, for normal incidence. (dashedlline represents a fit to thrg@wo) overdamped modes.
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T T T T T T T T modulation(x direction, giving g,=0. Thus, only fluctua-
tions along the average smectic layer normatj=q,, and

in the smectic planes but perpendicular to the modulation
direction,q=q,, are detected. We measured the intensity-
intensity time correlation functiogl(—¢,0)I(qg,t)) of the
depolarized scattered light as a functionéyffor two com-
binations of polarizer and analyzer, referred to as (Ofli-
nary to extraordinary scattering processid EO(extraordi-
nary to ordinary. Correlation data were obtained in zero
field and with a dc field oE=15 V/um applied parallel to
the smectic layergy direction. We verified that no damage
to the sample occurred by cycling the field, waiting one hour
between cycles, and comparing both zero and high field cor-
relation functions for different cycles. No essential differ-
ences were observed, although significant hystergsih-
ably due to charge injection and remaowvatcurred.

NORMALIZED <I(0)I(t)> (A.U.)

Ill. RESULTS AND DISCUSSION: ZERO FIELD

Figure 3 shows a typicéhormalized correlation function
obtained from our sample in zero field. One clearly observes
two overdamped modes—a fast mode, frequenoy
~10*~1® Hz, and a slow moday;~ 10 Hz. We also see a
weak additional modéindicated by the arroyy with inter-

7 B B ok o3 D Al a0 anl  and mediate frequencw,. To demonstrate the presence of the
1077 107 107~ 107" 107 1077 107" 10" 10" 10 intermediate mode, we compared fits of the data to two and
DECAY TIME (sec) three damped exponentials; the expression for the homodyne

o _ _ intensity correlation function is
FIG. 4. Measured zero-field time correlation functions as a func-

tion of scattering angleds for normal incidence. Uppetlower) 3 2
curves are data for OEEO) scattering processes. The solid lines are <| (—4,01 (q,t)> = Z Aexp(—wi(§)t)| +B, (3.1
fits to three overdamped modes. i=1

0

clearly observed in the polarizing microscope during cool-whereA; are the mode amplitudes, ailis the measured
ing, and remains after the electric field is switched off. Fig-background. Clearly a reasonable fit to the data requires three
ure 1(top) is a microscopic picture of our sample of betweenmodes. In Fig. 4 we show correlation data at several scatter-
crossed polarizers at 25 °C afid=0. The average director ing angleg10°-689 and at zero incident angle. In each case,
fiy is parallel to the stripe pattern within thel° accuracy of the lower and upper plots correspond to OE and EO polarizer
our microscope measurement; thus, the stripes correspond $6ttings, respectively. We see that the OE data vary signifi-
a spatial modulation of the director perpendicularigo The  cantly with scattering angle, while the EO data are less in-
period dy is ~10um (about equal to the cell thickngss sensitive tofs. The continuous solid lines are our three-
Detailed x-ray measuremerit3,10] have confirmed the op- mode fits. From these fits we obtain the dispersion relations
tical modulation is accompanied by a modulation of theof the modes for both the OE and EO cases. The results are
smectic layer orientation. A close examination of Figtdp) ~ plotted in Fig. 5. We find one dispersionleggnhydrody-
reveals a fine structure patteémadditionto the main stripes namig mode (;) and two dispersive(hydrodynamig

and roughly parallel to the main stripe direction. As shown inmodes(w, and w3). It is natural to expect that the slow
Fig. 1 (middle), this fine structure emerges clearly in a weakhydrodynamic modes are associate with fluctuation of do-
applied field €=0.4 V/ium). The fine structure spacing is main walls of the modulated structure, whereas the fast mode
approximately 2um, and appears to be commensurate withis associated with the so-called soft mode of the smektic-

the main stripe pattern. phase, which corresponds to fluctuations of the liquid crystal
A schematic of our light scattering experiment is showndirector away from the layer normal. _
in Fig. 2. Light from an argon-ion laséih =488 nm, inci- We now discuss a phenomenological theory to explain

dent power10 mW, focused waist100 um) was normally ~ these dynamics. Based on the results of previous x-ray stud-
incident on the sample. The position of the beam on thdes[3,10], we assume that both the main and fine structure
sample was adjusted to illuminate a region which gave sharpptical modulations of Fig. 1 mirror underlying modulations
diffraction spots corresponding to the wave vector of theof the smectic layers. For simplicity, we assume that the
main layer-director modulation. Excellent alignmentripf ~ modulations are sinusoidal in zero field. Figure 6 shows a
was indicated by a sharp minimum in the depolarized transschematic of the proposed structure. The equilibrium dis-
mitted light, observed a8, was rotated into and out of the Placements of the smectic layers for the main and fine struc-
scattering plane. The scattering anglewas varied between ture components are given by

10° and 70°, and the sample was oriented so that the scatter- 0 Dt (1) 0

ing vectord was maintained in a plane perpendicular to the Uyg(X) = Ug 'sin(do X+ ¢g”), (3.2
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FIG. 5. Zero-field dispersion of the frequencies of the three
overdamped modes corresponding to directer)(and domain wall

(w, and ws) fluctuations(see text Filled (open circles correspond 10 20 3 40 50 60 70
to the OE(EO) geometry, and solid lines are fits to Ed8.12— SCATTERING ANGLE 8 (deg)
(3.14 of the text. 8

: . FIG. 7. Calculated curves showing the dependence on scattering
Wherqu) and ¢>8) are the wave vectors and phases of theangle of the two combinations of scattering vector components ap-
two modulations. The fluctuating part of the layer displace-pearing in the dispersion relations for the fluctuation mddess.
ment is denotedl,. The angles describing the smectic layer (3.12—(3.14 of the texi. A low g, cutoff, representing the finite

orientation are cell thickness, has been imposese text
! auy 0 e alP<alt). The domain walls of the layer modulations are
a! (X)=— ~ = a0 coddo X+ ¢g ). (3.3 indicated by vertical lines; if we model these as “super-

smectic” density waves, the associated “layer” displace-
ments, denotedi{’, are continuous functions of. The

(Jjnodulation breaks translational symmetry along xhgirec-
tion, in addition to the usual broken symmetry of a smectic-

z A along thez axis. The symmetry in the-z plane is rectan-
I—> gular (with a large anisotropy in the periodicities alongnd

y X

As determined by x-ray and optical measurements,olﬁé
for the main component is a few degrees in zero field an

u M u @ z, d,/d,~10%), and is continuous along theaxis. We write
u "__) R the corresponding elastic free energy density as
%%/\’J&%A"&%A"&a 1S o o Jo1d
== +Co(au)? |+ = > [C(au
A&%A&%A& F: 2 Izl C1 (axux ) 2( zYz 2i 4 12\ x4z
SN N N 2N | = =
2
L L~ T . . . 1 . .
T T TN a7+ CiE () (9 1+ 5 | 5 K (u)?
LoD, DL o DL o 5 o
L DL oI T o +Ko(d3u,)? |+ 5 (A= 9)2+ - (V-T2 (3.4

FIG. 6. Schematic of a model for the layer-modulated chiral  There are three types of terms in this expressiofi)
smecticA structure. The horizontal sine waves represent the twd€rms describing deformations of the smectic layers and the
components of the layer modulation. Vertical lines indicate domairdomain walls of the modulated structure, which include first
walls for the two componentéere they are shown in phas@he  order elastic constant for the broken symmetry directions
displacement variables for the domain walls, as well as for thex andz; (ii) terms containing second order elastic modili
smectic layers, are indicated. for fluctuations in the continuous symmetry directignand
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(iii) coupling terms which favor parallel orientation of the where

director and smectic layer norde,S, and of the domain
wall normals for the two components of the layer-director

modulation, ™ and1®. The normals are given by

, (3.5
V1]

where

fe=2z—nd,—uly (x) —ulZ(x)—u, () —

MU (F)

a@(x)u (1) (3.6
and
[ Yfi , (3.7)
Vil

|

ne ny

n, /D O

ny 0 D

q,u X2> 0 0

where
(4)=CiZaz/ay+Ki"af, (3.10
A®(g)=CFala;+KPay. (3.1
The zero-order normal mode frequencies are
D
w=—, (3.12
i
1
wzza(cfzqilqurKquﬁD’), (3.13
1

wg=~ (Crzlay+Kiap), (3.14

where thez; are phenomenological damping coefficients,ye also imposed a low, cutoff, Qm.n

and
Ci=3(CH+C?), (3.19
Ky=3(KP+KP@) (3.16
We also assuméand verify belowy that
D'2>4(Cy—CY)?=(Cp)* (317

AM(G)+D’

fi=x—nd{’—ul(F). (3.9

Equations(3.6) and (3.8) are correct to first order in the
anglesa'”. The coupling between the directdr and the
domain wall fluctuationai{’), which is generated through
Egs.(3.4), (3.5), and the fourth term in the free energy den-
sity Eq. (3.3), is proportional to thea). Since these are
small quantities, the coupling terms may be treated as per-
turbations. The zero-order normal mode frequencies may
then be calculated by diagonalizing the matrix form J6f
with the (") set to zero. This calculation is further simplified

if we assume the energy associated with compressing the
smectic layers is effectively infinitéor u,=0). Finally, tak-

ing q,=0 for our experimental geometry argt>(q)?
(typically q,~6um™, q’~03um™, and q{
~1.5um™Y), we find

qyu§<l) Qyu§<2)
0 0

0 0
_DI ’
2(g)+D’

(3.9

-D'

The first mode is the nonhydrodynamic mode associated
with fluctuations ofi away from the smectic layer normal,
while the other two modes arise from in-phase and out-of-
phase motion of the domain walls for the two components of
the smectic layer modulation. The latter arelependent, as
anticipated from the data in Fig. 5. The key features of this
dependence are illustrated in Fig. 7, which pquséqy and
qy for

g,=Kkosin 6
sirf o\ 12
dy=Ko| 7 1_n—2 -n, | (OB, (.19

L

(OE and EOQ, (3.18

st e
m—n.|1- n2
L

1/2
dy=ko ) } (EO), (3.20

whereky=2m/\. To account for the finite cell thlckne$s
~2mlt, by replacmgqy
in Egs.(4.10 and(4.11) with q¥+ qmln In the OE scattering
geometry, we see that thﬁ/q and qy dependencies asso-
ciated with the first and second order elastic constants are
very different functions of)s. Moreover qZ/qy changes be-
tween the OE and EO scattering geometries from a peaked to
a smoothly increasing function &f;.

We now analyze the data for the dispersion of the three
modes in Fig. 5 using Eq$3.12—(3.14 and Eqgs.(3.18—
(3.20. The refractive index;, and anisotropyAn were fixed



57 LIGHT-SCATTERING STUDY OF MODULATBD . .. 3055

director, since only the latter scatters light. This requires di-
agonalizing the free energy, E(B.3), to first order in the
coupling parametera!) using a perturbative approach. We
obtain
Ny(G) = 1(q)
v2D
(q§+Qﬁ1in)l/2
_ q+
[w1(F) 71— @3(q) 73

q-
[01(§) 71— @2(G) 7,

wherey; are the zero orderormalmodes of the free energy,
whose amplitudes can be calculated using the equipartition
theorem

NORMALIZED SCATTERING: AMPLITUDE (A.U.)

o keT
<¢i(_Q)¢j(Q)>:m Sij (3.22

and where

10 20 30 40 50 60 70

= (af o)+ (af7 0 22 2040 0 o)
SCATTERING ANGLE 6, (de)

x cod ¢ — (7). (3.23

Combining these results, we obtain the scattering ampli-
tudes for the three normal modésr q,=0),

FIG. 8. Zero-field dispersion of the normalized amplitudes of
the fluctuation modes for OElosed symbolsand EO(open sym-
bolg) scattering. The soliddashed lines are fits to Eqs(3.24—
(3.27 of the text for the EQQOE) data.

kgT

. . . - 7n01(4)’
to typical values 1.51 and 0.16, respectively, during fitting.
Of the six remaining parameterB/ 7., C1J/7,, CiJ 73, KT 8q> 1
D'/7,, K{/7,, andK]/755. The latter two were found to  A,(§)= 5 —
be unnecessary to describe the data. Indeed, Fig. 7 shows

Aq(G) (3.29

17202(G) Gy+ i [1— 7303(G) m01(6)]7

that the curvature of the OE data in Fig. 5 is consistent with (329
a q2/q; dependence and differs qualitatively from th¢ 2

behavior associated with the second order elasticities. More- A;(G)= — _ —,
over, the shape of the data changes in the expected way 7303(q) 05+ dnin [1— 7202(0)/ 7101(G) ]
between OE and EO scattering geometries. Thus, four pa- (3.26

rameters involving first order elastic constants only, plus th
cutoff q.,i, were adjusted in the fits. Very good fits of all the
data are obtained fob/7,=27 000 s, C,,/7,=220s, A (G)— COLIA(G) (3.27)
CiJn;=2.6st andD'/%,=800s’. We also note that

D'2~16C,,*>C2, which is consistent with the assumption for OE scattering. Figure 8 shows fits of the data for the
in Eq. (3.17). The cutoff g,;,=1.88<10° cm ! is about normalized amplitudes;/=;A;, i=1-3, using Eqs3.24—
three times larger thans2t. In fact, we expect an overesti- (3.27 and the fit parameters obtained from the previous
mate since we have assumed a simple step-function cutofinalysis of the dispersion of the frequencigs Only four
exactly at 27/t; the actual cutoff would be a smoothly vary- new parameters—the viscosity ratigs/ 7, and 73/ 5, plus

ing function, presumably beginning at a shorter wavelengttihe dimensionless quantities. /k,—are varied for all six

8or EO scattering, and

(higherq,). data sets(The cutoffgpi,, N, , andAn were also fixed to
We have also analyzed the dependence of the normalizéfie values used in the fits to the frequengigslearly, the
mode amplitudes\; /=;A;, i=1-3 oné, for both OE and theoretical expressions give the correct qualitative behavior

EO scattering geometries. The data are shown in Fig. 8; noef the data. For the fit parameters, we fing/ »,=3.3 and
malized amplitudes are plotted since we did not measure thes/71=4.1, andq, /ky=0.017, q_ /ky=0.002. Referring
absolute scattered intensity. To calculate the amplitudes, weack to Eq.(3.23, this implies¢{"— ¢ lies between 90°
first express the dielectric tensor fluctuations in terms of flucand 180°; the simplest choice would be 1&@fe two com-
tuating components of the director for smatl), e(q) ponents of the modulation are out of phase with each pther
= €,c080n(G) (OE scattering and e(G)=e€,n,(G) (EO  Then takingg{"’=27/10=0.63um™*, we geta{’=10°,
scattering. (Fluctuations inn, contribute to OE scattering which is several times the zero-field limit extracted from
only, but are weaker tham, by a factor of orde().) Next  x-ray scatterind3]. This discrepancy might indicate that the
we must calculate the coupling of the domain modes to théwo components of the modulation are not pure sine waves
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[as assumed in Ed3.2)]. In this case, the quantitiesyqg T . T T T T T
would be replaced by a series containing many harmonics of
Jo- The sum of the coefficientg, in this series could be less
than the single value calculated above. Moreover, the param-
etersa.. are rather sensitive to the cutaff,, in Eqs.(3.25
and(3.26, and we have already noted that the simple form
used for the cutoff may not be entirely accurate.

To summarize, our analysis of the normal mode frequen-
cies and amplitudes, performed for two scattering processes
with distinct ¢ dependences and using only eight freely ad-
justed parameters for twelve dagats demonstrates that the
free energy density, Eq3.3), captures the essential features
of the fluctuation spectrum of the layer-modulated chiral

o o o -
~ o oo o

NORMALIZED <I(O)I(t)> (A.U.)

o
o

smecticA liquid crystal. For the amplitudes, the theoretical ol

description is less satisfactory, but is perhaps as good as L L L L L L L
could be expected from a first order calculation using a per- 107 10° 10* 1073 102 107" 10°
turbative approach. Our results confirm the choice of the DECAY TIME (sec)

displacements’ as the appropriate phenomenological vari- _ o
ables for the layer-director modulation. In zero field, the FIG. 9. A typical measurement of the high-fieldE (
symmetry restoring modes corresponding to fluctuations of=12.5 Vium) time correlation function of the scattered intensity in

these variables can be adequately described by the first ordée OE geometry. The solittlashed line represents a fit to three
elastic constants alone. modes using stretchdgure exponentials for the domain modes.

IV. RESULTS AND DISCUSSION: HIGH EIELD a spectrum of domain modes with wave vectors centered on
g. To account for this in our analysis of the correlation

Very different dynamics are observed in a high appliedfunction, we assume that the resolution function for scatter-
field. We applied a dc field of 15 yin; the dc field was ing from these modes is broadened from essentiafljumc-
used to avoid strong oscillating terms on the correlationtion R(G')=48(G—q') to a function of the formR(G’)
function, which would obscure the overdamped dynamics.

When the field is increased above a threshold valu€E,

~1.0 V/um), low-frequency macroscopic fluctuations of the ' ' ' ' ' ' ' '
domain walls associated with the fine structure can be ob-
served; the fluctuation amplitudes become larger as the volt-
age is further increased until the fine structure is almost com-
pletely destabilized and significant amplitude fluctuations of
the main structure are observed. This effect is shown in Fig.
1 (bottom), which is a microscope picture of our sample
under a field of 12.5 \im. These large fluctuations dramati-
cally alter the light scattering correlation function; Figs. 9
and 10 display data fde =15 V/um for the same scattering
geometries used in zero field. The data differ significantly
from the zero field caséFigs. 4 and 5 The nonhydrody-
namic director mode is still present but is much weaker and
faster. On the other hand, the hydrodynamic domain modes
become slower and much stronger. Moreover, as Fig. 9
shows, we can no longer fit the correlation data with pure
exponential decays as used in the zero-field case.

These results pose the question of whether we can analyze
the high-field dynamics in terms of the phenomenological
theory presented above. In particular, the large fluctuations
in the domain wall displacements suggest that anharmonic
terms in theu(’ variables should be incorporated in the
analysis of the free energy. These terms would have two -
important effects for light scattering. First, the fluctuation L L L I L ! L L
amplitudes(|u{’(g)|?) would depend on renormalized har- 10°% 107 10™* 107 102 107" 10° 10" 102
monic elastic constants; for a certain class of smectic struc- DECAY TIME (sec)
ture, this has been shown to be a very significant effeet
below) [11]. Second, anharmonic terms would lead to non-  F|G. 10. Measured high-field time correlation functions as a
linear dynamical equations, resulting in a coupling betweenunction of scattering anglé for normal incidence. Uppetower)
fluctuations at differenfj. Thus, the light scattered into the curves are data for OEEO) scattering processes. The solid lines are
detector for a fixed setting of our spectrometer will contain fits to three overdamped modes using B2 of the text.

(&2}

N

NORMALIZED <I(0)I(t)> (A.U.)
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~exp(—w|g—q'|"), wheren is non-negative and we assume 108

the broadening can be anisotropic dp since the allowed B ' @,
anharmonic terms arell]. If R is normalized to unity, for | o ° %00 ° o .
n—o, we recoverR(q’')~8(G—¢q'). 1051 ° t i ° ]

Including the director mode, which to first order is decou-
pled from the domain wall displacements, the measured cor
relation function is
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If we now approximate the frequencies by their lowest order
values (linear dynamick the g-dependent part of the fre-

quencies isw;(G) =TI";q°. (This form applies ifsecondorder 10°
elasticity dominates the free energy, which is consistent with
our results from analysis of the high field data discussed !
below) Then the first terms in Eq4.1) are proportional to 10° 2-0 3'0 °4-0 5'0 6.0
fdg’ expwilg—a/ |MA(G )exd —iT,q’?], which at long 70
times corres],p(])ndjs to a stretched exponential time deper SCATTERING ANGLE 6 (deg)
dence[12],
FIG. 11. High-field dispersion of the frequencies of the three
2 overdamped modes corresponding to directoy)(and domain wall
(1(=4,0)1(q,t)) 2 g)exd — (w;i(G)t)] (w, andwy) fluctuations. Filledopen circles correspond to the OE
= (EO) geometry, and the solid lines are fits to E¢%12—(3.14) of
2 the text.

+Az(d)exp(— w3(g)t)
placements. According to a recent theoretical anallykis,
(4.2  anharmonic terms arising specifically in smectics, which lack
inversion symmetry through the layer plane, can produce a
where the exponent=n/(n—2) [12], and theA may differ ~ nontrivial renormalization of the elastic constants. Specifi-
from A; depending on the details &(q). Clearly this result cally, the displacement fluctuations divergepasver lawsof
is sensible only fom>2, or x>1. This function has been the system sizeé, and the elastic constanBsandK undergo
used extensively to model overdamped dynamics where a softening proportional to inverse powers lof The first
distribution of fluctuations characterized by different valuesorder elasticities, however, soften more rapidig~K3
of some propertyhere the wave vecta§) contributes. It has ~1/L¥4 Thus, under an external stregsg., applied fiely it
the additional virtue of adding only one more paramétiee  is possible to observe very large displacement fluctuations
exponenk) to fits of the correlator data. As shown in Figs. 9 described purely by second order elasticity without destruc-
and 10, the function does indeed describe the data(wél  tion of the smectic layers. If we consider the domain walls of
x=1.5 in all the fit3, in contrast to a pure exponentiat ( the modulated structure to represent layers of a ‘“super-
=1). smectic” structure, this scenario is similar to what is ob-
The mode frequencies obtained from these fits are preserved in Fig. I(bottom and in the crossover of the dynam-
sented in Fig. 11. We notice that the director mode is arics. It remains, however, to verify that the domain walls lack
order of magnitude faster &= 15 V/um than in zero field; inversion symmetry. This we cannot do without a detailed
the nonhydrodynamic ga@/7; now has a value of explanation for the origin of the modulated structure. At
240000 s* (versus 27 00078). In addition, the dispersion present we can only speculate that if charged impurities play
of the domain modes changes from a convex to a concavan important role, a domain wall could represent the inter-
shape—or from a functional form glven hﬁ/qy (associated face between a region dominated py the influ_encg of positive
with the first order elastic constaft;,, see Fig. Jto the i0ons and one dominated by negative ions—in this case, the
form q (associated with the second order elastld(ty) domain walls(or smectic “Iaye_rs’) would Iac_k inversion
The fits to the data using Eq€3.12—(3.14 confirm this symmetry. On the _o?hgr.hand, |f.the modulation is pyrely a
crossover. We obtaian/nzzl.lx 108 s e and consequence .of minimizing elastic energy, the domaln waIIs_
+/7]3_2 2% 10-19 51 e with sz 0. The gap param- have no special microscopic meaning, and there is no basis
eterD'/ 73 has the same value as in zero field, and the afor breaking inversion symmetry.
3 P& The sharp change in the frequency and relative amplitude

lrjaergetermb An, andqpi, were fixed to the zero-field val- of the high frequency director mode can be understood by

We now consider a possible explanation for these result§onsidering the additional terms- P-E+ Ae(E-)%/2=
based on anharmonic fluctuations of the domain wall dis— P(n><IS) E+Ae(E fi)2/2, which are present in the free
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energy density for nonzerg. (Here P is the polarization lizes the modulated structure, and results in a substantial
due specifically to field-induced chiral symmetry breaking. Softening of the first order elasticity. The domain modes are
To second order in the director fluctuationsandn, , this ~ NOW dominated by second order elasticity, characteristic of a
givesPE sin gn2/2+ A eE2n2/2. As remarked in Secy Il we fluid. A significant softening of first order elasticity has in

X . . 1 . . . .
may neglect the second term, since the scattering from flud@Ct Peen predicted in systems with smectic structure under
tuations inn, is expected to be much weaker than. Then external stress, if the smectic layers lack inversion symmetry.
the frequeyncy ®, gets an additional contribution If this idea is applicable to the domain walls of the layer-
PE sin @/2n,, which will dominate at high field. We can director modulationvisualized as ‘“super-smectic” layers
estimate tr;is contribution using the measured it suggests that the latter should have some microscopic
—70nClcr? and #=15° at E=15V/um and taking structure which breaks inversion symmetry. A likely
— 4 cP(a typical valug. We then obtainﬁ —200 000 51 7{; mechanism—and one which could significantly alter the dy-
= ' = ,

. g namics in an applied electric field—is a nonuniform distri-
good agreement with the measured value in Fig. 11. bution of charged impuritiegs,7], which are known to give

rise to “ion” modes in ferroelectric liquid crystal$13].

Light scattering experiments in an ac field, to look for char-
In this paper, we have shown that chiral smegtitiquid acteristic cutoff frequencies in the response of the domain

crystals, in which the orientation of normally flat layers is modes and thereby probe possible electrohydrodynamic ef-

modulated in one dimension, exhibit new, symmetry-fects in the modulated chiral smec#cphase, are currently

restoring fluctuation modes. These modes correspond to méinderway.

tion of the unit cell boundarie®r “domain walls”) of the

modulation; both their frgquency and amplitude dispersion ACKNOWLEDGMENTS
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V. CONCLUSION
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